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I. INTRODUCTION

The Rydberg states of the N2 molecule have long been of

interest. As a result of the axial symmetry of the molecule in contrast

to the spherical symmetry of atoms, one expects a 
wide variety of Rydberg

series for N2 . Because of the complexity of the N2 spectrup,

some predicted Rydberg series have not been observed, and there are

many observed lines as yet unidentified.

In this paper we shall present theoretical calculations of the 1,3+ 
g

1,3 + 1,3 an 1,3
r u 1 

an d fl Rydberg states, all converging to the groundu9u....

2 +
X 2 + state of the N2 ion. Numerous theoretical treatments of N2 Rydbergg2

2-5
states have appeared in the literature. All these works attempted

to construct an effective one-electron Hamiltonian to solve for the Rydberg

2
orbitals as is done in this work. In this regard Duncan and Damiani

approximated the core orbitals by one-center functions (centered at the

midpoint of the two nuclei) to facilitate the calculation. Betts and

3 5 3
McKoy used a model potential in the Hamiltonian. They used as basis

functions a set of Gaussian-type orbitals (GTO) centered at various points
4

along the nuclear axis. Lefebvre-Brion and Moser constructed the

Hamiltonian by using the occupied orbitals. Their basis functions for the

Rydberg states are the Slater-type orbitals centered at the two nuclear sites.

In many ways our approach parallels that of Ref. 4. However, we take

the view that a Rydberg state must reflect a physical situation in which an

electron moves in a nearly central field. Thus, we begin by treating a

quasi-spherical molecular system (centered at the midpoint of the molecule)

in which a Rydberg electron is characterized by atomic-like orbitals with ",' S

angular momentum (E,m). Since this idealization is not fulfilled for the

real molecular Rydberg states, we make allowance for 1-mixing to obtain

- - -, = -' "', *.-" " .- ":. - -. ". "'*: " . . . . . *



* the final results. Formal theory on the Rydberg states is extensively

discussed by Mulliken. 
6 A detailed analysis of the molecular

* requires consideration of such interactions as the coupling between the

electronic motion with molecular rotation. However, we restrict our 
-

scope to the electronic part of the problem, and calculate the wave

functions at the equilibrium separation R 1.1 of the X state of

+
* N
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11. IIETHOD OF COMUTATION

The Rydberg states converging to the ground 2 E+ state of N2+ ion

have the electronic configuration,

(lo ) 2 (2 9 ) 2 (10u) 2 (2o u) 2 (1 u ) 4 ( ( )()Ry

Since the core (N2) is in a E+ state, Rydberg orbitals JRy of the type

1,3+ 13X+ 193 1,3koka kirandkw give rise to the E'Eg 1'U H'fg and 1'fu
g, up u g' u

states respectively. The corresponding wave functions are constructed as

antisymmetrized products of these one-electron molecular orbitals (MO)

e~g.,•

V(lzg) = g(r lg(r2)0 ...3a(Ni U N

+Ia(r )at lao S.3 al 2+ l 1 gi • g N-iB ,o N (2)...

,

where . I represents a determinant, and a,B are the two spin functions.

The Hamiltonian of the system is (in atomic units)

14 2 - l +14 1
2 = -~ 4. z(I14 r + Ir _r + Z r - (3)
1 iii>J

where XA' B are the two nuclear sites and Z(-7) is the nuclear charge.

+We ,adopt the frozen-core approximation, namely, we assume that the N2 core

orbitals are not affected by the addition of the Rydberg electron. Hence

the lag, 2o, lo, 2o, lwu, and 3O core orbitals in Eq. (2) are obtained

8 2 ++by the self-consistent-field (SCF) procedure for the X Z state of N
9 2*

In-this SCF calculation the GTO are used as the basis functions, and the

core orbitals are expanded by GTO centered at the two nuclear sites.

As for the Rydberg orbitals we express them in terms of basis functions

which are centered at the midpoint of N viz.,
2'

Ui
. . . .... .. - - .... . . .e2- . . . '-" .-. ' .. ______ ' -'. 7'-.-.._...-'-'..-._ . . ,,"
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-Ry £kt cuk(krtm(r), (4)

with

u kt(r) 1 t rYI(r (5)

The notation is standard except that'n is replaced by k. Our use of one-center

* basis functions for the outer electron differs from the works of Refs. 3 and

4 in which the basis functions consisted of molecular orbitals constructed

from prechosen atomic orbitals judged to be suitable by the respective

authors.

A. Basis Functions

Following the standard notation of the Hartree-Fock theory, we designate

the electron-nucleus and electron-electron interaction by V and the electron

exchange operator by W. For a diatomic molecule if we use the spherical

harmonics as the angular part of the basis functions, as in Eq. (5), the axial -.

nature of the diatomic molecule makes V and W diagonal in m but not in I.

This is reflected in the I-summation that appears in the expansion of the

wave functions according to Eq. (4). To ensure fast convergence of the

k-summation in that expansion, we choose as the F km(r) functions the

solution of a quasi-spherical molecular Rydberg system. In other words

the Fki's are obtatitd by solving the integro-differential equation

d2  Z(1+1) W,+ A(r) F (r)+ k (r) 0, (6)
2 2 - ' ft im m,.m kfm kfm

dr r

where

. ~ * . - . . * . * .

~ ~ ;~* .'. :- .-,

* ,---~".. ~..... . .



6

V ,r) -- 2Zd *(r (r) (I r- + IrBI-)

+2 fdrr x Y , zW f r-j ' ' Ii, d (7)"-'

The summation over j covers all the core orbitals * with the respective

occupation numbers f.. The exchange potential is an integral operator, viz.,

4w * - *
W mt,(r)Fk, t ,m(r) = -Ef!Etg [-i]+Ir fdr Yt ()Y( G")

x[i{r-tlf0r t ,m(r')dr' + rt Irrt-lFk,L,m(r')dr'.

xr' Sdr' Ytg(r')Y ~ (r(')]., (8) :.

where, again the summation is over the core orbitals with appropriate

numerical coefficients f'. The detailed numerical procedures of computing

Eqs. (7) and (8) are shown elsewhere.I0  Here, we merely note that Eq. (7)

is computed with no approximation, but the summation over t in Eq. (8) is

an infinite series, which is truncated after five terms.

Except for the exchange term, we follow very closely the procedure of

11Herman and Skillman to compute numerically F (r). As to the exchange
kRtm

term we do not use the Slater approximation, but adopt a scheme which has

been applied successfully to electron-scattering problems.9 ,12  That is,

as we solve Eq. (6) iteratively for .. F , F , etc. for the n-th

and (n+l)st sets of solutions, we approximate the integral operator as

WF(n+ l) LtWF(n) (n )  F(n+l) (9)

except for the initial cycle where we set WFMI) = 0. The function WF~n)

(n),-
is first computed by using the solution of the previous cycle F as

(n)
shown in Eq. (8), then divided by F . Thus, Eq. (6) remains a

.,. . . .- o

. '- .-. - .-" . i- .'i'''-.. .-. . .... .- .. - .. < - . . . . _ - . , . . .... . " '
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homogeneous equation as in the calculation without exchange or with exchange

(n+1),(n)
treated by Slater's approximation. In the limit of convergence F+ F

in the self-consistent iteration, Eq. (9) is Justified. We have not

encountered any serious numerical problems associated with dividing WF(n )

by F(n). The mesh-sizes used are shown in Table i.

In this manner, we computed the radial basis functions Fk m for k 1-11,

= 0-9, and m - 0,1. The exchange coefficients f; appropriate for the singlet

states are used. No separate set of basis functions is calculated for the

triplet states.

In Tables Il-V we list the values of X which are the elgenvalues of the
kim

quasi-spherical Rydberg molecule. For large values of k, we expect Xkim to

• "approximate fairly well the Rydberg levels. In this paper, of course, we

do not take F and Am as the solutions of Rydberg states. Instead we use
k.m kim

the Fk~m functions as basis functions. We expect these functions to outperform

most other arbitrarily chosen basis functions.

SB. Diagonalization

From Eqs. (2)-(5), we have a system of equations for the coefficients

ck in Eq. (4),

(H- ES) c =0, (10)

with the matrix elements

2
H= - f dr Fk m(r)[ 2 - Vm m(r)ktm, k' ?'m kt r)tI'

dr r

Wre .,(r01 Fk, 9 . (r), (1)

S, .-. . . . . . . . - -- - •
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Sk k'' F (r)Y* (r)Fk,.rYr drdr. (12)

Because we used the frozen-core approximation, c obtained from Eq. (10) does•. : 5.*

not yield wave functions that are orthogonal to the occupied orbitals. To

ensure the orthogonality we make the following modification. For example,

in the case of Z states, we construct a new set of orthogonal basis functions ' .

by using the c's obtained from Eq. (10), i.e.,

Xv(Og) +kCkV kgm Eia v(), (13)

.i 

i'v i g

where () are the three occupied orbitals (lag, 2 ag 3a and the index

v indicates the collating sequence of eigenvalues. The X functions are then

used as basis to construct the Hamiltonian and overlap matrices H' and S'.

Solution of new secular equation

(H' - E'S') b = 0, (14)

gives the orthogonalized Rydberg functions, e.g.,

S , o) bk c (r) + Yi~4(o) j 1,2,... (15)
11 g vv, j v g k pukfm ii g

We have solved eight different sets of secular equations corresponding to

1,3 + 1,3 + 1,3 1,3
the 1'g1 u'1 11g' and 1 nu states. The MO in Eq. (15) are drawn
from the occupied orbitals, (l ), (2o ), (3o ), (lo ), (li ) according to

the symmetry of each secular equation. The eigenvalues obtained from

Eq. (14) are shown in Tables VI - XIII. Here, as in Tables II-V, we present

six digits for the eigenvalues in order to see how closely the c'-eigenvalues

approach the X-eigenvalues and the hydrogenic levels with increasing L.

I

.............................................................................................. ".... .. ".." .-" ..''.....'...'... . .,..... ,..:
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III. RESULTS AND DISCUSSION 9
A. The X eigenvalues

T kim

Inasmuch as the A eigenvalues in Eq. (6) for large k may be taken

as the first approximation to the energy levels of the Rydberg states, it

is instructive to analyze the values of A in terms of the effective

potentials V and W in Eq. (6). The index k specifies the number of nodes

of F (r) which is equal to k-t-1. The values of A shown in Table II-V
kkm

reveal the following features in comparison with the energy levels of the

H atom which are included in the last column of Table IV:

(1) The values of A with £ > 4 are very close to the corresponding

hydrogenic levels, suggesting that these basis functions may

already be a fair representation of the respective states.

(2) The values of A with 1 = 0,1,2 show no resemblance to the
ktm

corresponding hydrogenic levels.

(3) For t = 3 the A-values of the (kf) E ( = 3) scl-ies appear to beu

displaced nearly by one unit in k from the hydrogenic levels,
d1

whereas the members of the (kf) I series are close to theu

hydrogenic levels of the same k.

The finite separation of the nuclei is an obvious cause of departure from the

central field. Figs. 1-3 illustrate the difference

AVim,£m = m,t - (- 1/r). (16)

Because of the strong attraction by the nuclei, AV shows a potential cusp

at the nuclear site (r = R/2 = 1.05 a). AV Is negative for r > 0.3 a •
N0

It covers a range of r ' 0.6 - 1.5 a and becomes negligible at
0

r 2.0 a . The position of the cusp is evidently dictated by the
o%

geometry of the molecular ion, hut the depth of V depends

.I°

-..........
---- S

-. ~-~%:K:-2:K;K:-:- - .
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not only on the core orbitals but also on the symmetry (1,m1 og the Rydberg

state under consideration. For instance a-type Rydberg orbitals in
+

general overlap more favorably with the charge density of the N core
2

than do %-type Rydberg orbitals. This is reflected by the larger IAVI

for the Z states since all the Rydberg states considered in this paper

+ 2+have a commonN 2 (2E ) core. The attractive perturbation AV must be

2* weighed against the repulsive centrifugal term L(E+i)/r in Eq. (6),

For I > 4 the centrifugal barrier completely overpowers AV and keeps the

Fk~m functions so far away from the origin that they have virtually no

overlap with AV. The corresponding A's should be very close to the hydrogen

value of - k2  For smaller £ the perturbation AV shifts the nodal points

of Fk£(r) relative to the corresponding hydroge'nic wave functions as

discussed in Refs. 6 and 13. Moreover the strongly attractive potential

well of V has a number of deep bound states which correspond roughly to

the core orbitals of N These deep bound orbitals add further
2*

complexities to the nodal structure of the Rydberg orbitals through the

orthogonality requirement. Hence we find a wide range of shift of Ak m

2from the hydrogen limit - k2 for £ < 3.

The effect of electron exchange may be estimated perturbatively by

using the hydrogen radial function Rn£; namely, we have computed

2 2AV = fR. (r)AVm,Om(r)r dr, (17)
kim

and
Wktm f Rk(r) Wmtm(r)r2 dr. (18)

For t series the ratio IW/AVI ranges from 0.049 (k=4) to 0.018
9

(k=ll); for (kd) lE+ from 0.0047 (k=4) to 0.0021 (k=ll); for (kp)l+

-" -

r..'



from 0.15 (k-4) to 0.061 (k-l1);for (kd) fl , from 0.0063 (k=4) tog'

0.0029 (k-11); and for (kp) 1l from 0.14 (k-4) to 0.052 (k-11). For the

higher-angular momentum states, the electron exchange is quite negligible

(10- 5 or less).

B. The Rydberg Levels

The energy levels of the Rydberg states are obtained from Eq. (14).

Due to the orthogonality requirement, the energy roots associated with the

deep levels of the effective potential are eliminated. Equation (14)

allows various (ki) members to mix within a symmetry of A (or m since the

N+ Is in a 2+ state). Except for a few cases there is always a2 core s

dominant (ki) member in each Rydberg state wave function. Thus we label

a Rydberg state by n which is taken as the k-value of the dominant member. -

We also retain the label £ even though it is not strictly a good quantum

number. The Rydberg state energies are summarized in Tables VI - XIII.

By far the strongest mixings occur in the (ns) 1,3 + and (nd) 1,3 + series
g g

and the mixing coefficients for the singlet states are shown in Tables

XIV and XV. Admixture with (k£) members of £ > 4 are much smaller and

1+
omitted from these tables. For the (ns) Z series the'identity of n is

g

not clear until we reach n - 7. We simply assign n = 6,5,--.. to the

lower roots of the series consecutively. The next group of series shows

an appreciable mixing with the adjacent k values but no mixing with the

1,3+ 1,3different I values. This group includes the (np) E , (nd) '3 , and

(np) 1,3 states. For illustration abbreviated tables are presented of
U

the singlet states of this group. The mixing coefficients with different

.' = 2 + 2 are at most 0.011, and usually much less. The rest of the states

(t > 4) are entirely atomic in character with the dominant coefficients

ck£ > 0.9999. A comparison of the X-eigenvalues in Tables II - V and

with the corresponding ,'-eigenvalues in Tables VI - XIII also confirms this.

4..#

........... *..

""-i'~~~~~~~~~~~~~~~~~~~~~~.'."..."."....". -.-. ' .' ' "-......-'-,"•"-. ....... . . .,. .-. . ..... ..... . ........ "**."'*%
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The mixing patterns for the triplet states are qualitatively similar to
those of the singlet counterparts and are not given here.

We now interpret the energy levels in Tables VI XIII in terms of

the quantum defect 6,

E (19)
2(n-6

The m-dependence is implied through the symmetry of Rydberg states. Many

. theoretical analyses have been made on the quantum defect of atomic
14-..

Rydberg states. Characteristically the quantum defects of an atom

depend on I, but are nearly constant of n within an I-series. Further, if

I max is the largest of the angular momenta of the core orbitals, the

quantum defect is very small for those Rydberg states of I > .
max

Although a general analogy to the atomic case clearly exists, such a simple

characterization of the molecular Rydberg states must be tempered with

caution. In the present problem of N the quantum defect r clearly

shows an I-dependence as in the atomic case. But, in contrast to the

atomic case, 6 varies considerably with n. The largest variation of

a with n is found with the (ns) lE series in which 8n varies from 0.718

1
(n=4) to 0.413 (n=ll); (nd) 11g, 0.871 (n=4) to 0.641 (n-11);

and (np) 1+, 1.581 (n=4) to 1.309 (n=ll). These states are characterized

*" by strong mixing of the basis functions as shown in Tables XIV, XVI and

" XVII. The next group shows a moderate variation, which includes

(np)l1H for which n ranges from 0.660 (n=3) to 0.596 (n-ll); and (nd) E+

1.0449 (n=4) to 1.0325 (n=ll); and (nf) E, 1.00678 (n=5) to 1.00916

(n=ll). These states have relatively small mixing among the basis functions.

In the case of the (nd)lE+ series an appreciable mixing is found between the
9

basis functions of the (k,d) and (k-l,s) series (see Table XV), but

° -.-. ... . . . . . .. .
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energetically those two groups of basis functions are very similar. Other

states of large I show markedly smaller quantum defects. This is in

accord with the concept of penetrating/nonpenetrating atomic orbitals.6

[The core orbitals may be decomposed into the constituent E-components.

From this analysis, the charge densities are found to be mainly confined

to £ _< 3: la (42.6%), 2O (92.5%), 3ag (94.8%), lou (60.0%) 2O (96.9%)

1T (98.0%).] However, even when the quantum defect is small, n is

still not entirely constant within a series. A very similar situation

exists with the triplet states studied in this paper. Thus, we are not

able to support the qualitative prediction 15 that 6 is constant of n
nL

for the N2 molecule. Since the exact solutions of H are available,
2 2

Mulliken16 analyzed the quantum defect of H2 as a function of the internuclear

separation. At R = 2.0 a a comparable variation of 6 with n is found
0 nt+

in H This is consistent with the present results. Moreover, the
2*

R-dependence of 6 may be understood in terms of the combined effect

of the angular momentum barrier and the potential cusp AV(r) at rN = R/2.

Unfortunately, because of this complexity a generalization of the quantitative

featuresis difficult for molecules.

1+ 1+The (nd) Z and (nf) E series have a quantum defect slightly larger
g U

than one. If we shift the n scale by one unit, these two series would

appear to have very small quantum defects. The same shift would make
1 + 1

the apparent quantum defects of (np) E smaller and those of (nd) R
u g

negative. Care should be taken to allow for this possible ambiguity in

the assignment of n when comparing theoretical Rydberg levels with experiments.

The Rydberg states of N2 are important to the optical properties of

the atmosphere as transitions among many of these states are in the

infrared region. Application of the selection rules At -+i, AA = 0

and ±1, and AS = 0 to the Rydberg levels reported in Tablcs VI - XI..

U- . * .. -* . . .. . .. . , * . e * _' _._ * ," ,",.. , : .. , . . j _ *.. _,.; . .. , , " . ..-.
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yields a vast number of transitions of wavelength in the range of 4-20

um which are displayed in Figs. 4 and 5. All transitions are drawn to the

same height and no consideration was given to their relative intensities.

Since we have considered only levels through n - 11, Figs. 4 and 5 do not

represent a complete listing of all possible transitions in the 4-20 Pm region.

To illustrate the richness of the Rydberg spectrum we mark in these - -

figures the wavelengths of the limiting hydrogenic transitions of the

- Rydberg levels involved. Figures 4 and 5 are based on consideration of

electronic states with no reference to molecular vibration and rotation.

The vibrational potential curves of all the Rydberg states considered

here have virtually the same shape as the potential curve of their parent

N 2 +
g ) state and therefore have identical vibrational frequency. '.

Furthermore the vibrational-level selection rule for electronic transitions

between such Rydberg states is Av = 0 according to the Franck-Condon

principles. Thus the vibrational levels. have no effect on the transition

frequencies. The rotational levels do produce fine structures in the

electronic transitions replacing each line in Figs. 4 and 5 by a band.

i.'% . -o

* .. . . . - * . . .. . . . ..

-' "- . .- ._.'_._.".." -" ." - ." "." ' : :'. ''-'. ''''.. :. '"." . .". '. . :--.-- - .... .- "" "." - .":- - - -. . .. ' .',. ' .



15

IV. COMPARISON WITH OTHER WORKS

The energy levels of those Rydberg states, which may be compared with

other works, are compiled in Table XIX. In accordance with the previous
wokI

works the energy levels are converted to show the term values above the
) ground state based on the fact that + 2 + is 15.581 eV above

N IXIE+)

4The theoretical calculations of Lefebvre-Brion and Moser are similar

to the present work. Both calculations are quite rigorous within the jjjj
framework of the frozen-core approximation. In describing the Rydberg I,
orbitals, however, they approached it from the separate-atom picture,

whereas we use the united-atom picture as the starting point. Therefore,

the reliability of the present work increases with the increasing quantum

numbers. The model potential employed in the calculation of Ref. 3 does

not reflect the details of the potential of the one-electron Hamiltonian

discussed in the previous section. Although the model-potential approach

affords a great deal of computational simplicity, it does not include the2+ 2 2, +,.,
provision of distinguishing the ionic states (X21£ , A211, B ZE) to

which the Rydberg states converge, or the spin multiplicity (singlet or

triplet) of the Rydberg states. Nevertheless, all three sets of theoretical

calculations agree reasonably well.

The experimental data are summarized in the extensive review article

by Lofthus and Krupenie. In some cases the experimental values cited

in Table XIX are taken from the original papers17'1 8  as annotated. A

general agreement is seen between the theory and experiment. Some

refinements 19 of the experimental work have been published recently. The

new data agree with the earlier ones to within typically five digits. This

is below the estimated uncertainty of our theoretical values.

• -", " t~~~~~~~~~.. .. .- '/ ' .... .....'-, ' -"". , --...... • .- .
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1 +

Most of the observed Rydberg levels are confined to the (np) r
U

11

components, it would seem that (nf) lE + and (nf) I Rstates may appear in 5
U U

1 + 1
the absorption spectra analogously to the (np) E~ and (np) nT states.

However, no experimental evidence has been found so far as to their

existence or identity. In this connection we may mention the recent

* identification of the k RI state as a Rydberg state converging to the
g

2+ + 18
X Eg (N2). The term value 14.100 eV is close to 14.191 eV of the present

calculation.

44%0%-

r'
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V. SUMMARY AND CONCLUSIONS

The spectrum of the N2 molecule is indeed extremely complex. In this

paper we have dealt with the electronic part of the problem. We have

placed the emphasis on the calculation of high Rydberg states, therefore,

the united-atom approach is a natural choice. For high-angular-momentum

states the molecular core may be treated as a quasi-spherical one. For

low-angular momentum states, mixing of the eigenstates of the limiting ]
quasi-spherical system is necessary. The agreement with other theoretical

calculations and experiment is reasonable and satisfactory.

The finite separation of the nuclei adds a new dimension to the

problem that is not present in an atomic case. It appears that the

properties of Rydberg series may vary greatly from one molecule to another

and from one series to another within the same molecule. A rough estimate

of the electron-exchange effect is about 15% of the Coul mrb effect or

less. In the frozen-core approximation adopted here, we take the core
+,2

orbitals as those of the N+ (X2E+) ion and neglect any orbital readjustment
2 g

due to the addition of the Rydberg electron. Such a charge redistribution

is often referred to as the core polarization which is sometimes treated

4 *by introducing the polarization potential -a/2r where a is the polarizability.

20For the case of atoms, Van Vleck and Whitelaw have shown that the use of

the polarization potential is valid only under several restrictive conditions.

To fully address this point and other pertinent questions such as electron-

correlation energy would require computations on the level of configuration

interaction. Although the multiconfiguration self-consistent-field method

has been applied to the ground and low excited states of molectles, it wold

be an enormous undertaking to incorporate the multiconfiguration scheme to

the Rydberg states. At this time a more practical direction to improve

,- . . . . . . . ..... .* %,..*;*-*- .- *.*..:. " " " "' '', *".-".' -: "-'"*. -" "' "' "" " " " " - """" -. ..- - " .. .. "''
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the present work is to allow the core orbitals to relax under the influence

of the Rydberg electron. The core-orbital relaxation should be more

important for the lower Rydberg states. This is consistent with our

observation that the lower Rydberg states show larger discrepancy between

theory and experiment in Table XIX. Furthermore inclusion of core-orbital 1_
relaxation by a variational procedure would lower the calculated Rydberg

"- levels making a change in the right direction toward the experimental values.

%i

I--

a. ,,.

-. °o o..
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Table I. Mesh size of integration ain a0

r 6r rf

0.0 0.0125 1.5

1.5 0.0250 2.5

*2.5 0.05005.

5.5 0.1000 12.5

12.5 0.2000 356.5

a an
Nr adr are the starting and terminating points respectively with thei f

step-size 6r.
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1+ aTable 11. X-eigenvalues of E C m -0) type basis functions

k t 0. 12 Ln4 L6 L8

1 -29130b

2 -1.59652(-l)

3 -6.55096(-2) -2.21840(0)

4 -3.53493(-2) -5.60753(-2)

5 -2 .20659(-2) -3. 14138(-2) -2 .00297(-2)

6 -1.50711(-2) -2.00714(-2) -1.39061(-2)

7 -1.09426(-2) -1.39264(-2) -1.02149(-2) -1.02075(-2)

8 -8.30418(-3) -1.02263(-2) -7.81968(-3) -7.81472(-3)

9 -6.51646(-3) -7.82672(-3) -6.17785(-3) -6.17435(-3) -6.17345(-3)

10 -5.24949(-3) -6.18248(-3) -5.00361(-3) -5.00107(-3) -5.00039(-3)

11 -4.31904(-3) -5.00684(-3) -4.13492(-3) -4.13300(-3) -4.13249(-3)

an atomic units (1 a.u. 27.21 eV).

b
Numbers inside parentheses indicate the power of 10.

41
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I1+a
Table III. X-eigenvalues of r (m - 0) type basis functionsa.

U

,

k - 1-3 1 5 t 7 9

2 -3.53198(0)

3 -1.95374(-l)

4 -6.52276(-2) -2.25576(-1)

5 -3.46552(-2) -3.13678(-2)

6 -2.16090(-2) -2.00570(-2) -1.38980(-2)

7 -1.47799(-2) -1.39207(-2) -1.02098(-2) ...

8 -1.07502(-2) -1.02236(-2) -7.81628(-3) -7.81390(-3)

9 -8.17186(-3) -7.82535(-3) -6.17545(-3) -6.17377(-3)

10 -6.42207(-3) -6.18174(-3) -5.00188(-3) -5.00063(-3) -5.00027(-3)

11 -5.17998(-3) -5.00639(-3) -4.13359(-3) -4.13268(-3) -4.13239(-3)

'-a

See the footnotes in Table II.

: .~ ".

"-".-

. . . . . . *.*.*..J** . .



24

1 a
Table IV. X-eigenvalues of iH (m 1 1) type basis functions

b

k L2 t4 L 6 L 8 Hydrogenicb

* ,, '%m .S t

3 -6.74709(-2) -5.55556(-2)

4 -3.84349(-2) -3.12500(-2)

5 -2.39647(-2) -2.00253(-2) -2.00000(-2)

6 -1.62267(-2) -1.39034(-2) -1.38889(-2)

7 -1.16817(-2) -1.02132(-2) -1.02072(-2) -1.02041(-2)

8 -8.80125(-3) -7.81856(-3) -7.81455(-3) -7.81250(-3)

9 -6.86535(-3) -6.17706(-3) -6.17424(-3) -6.17340(-3) -6.17284(-3)

*10 -5.50324(-3) -5.00304(-3) -5.00098(-3) -5.00037(-3) -5.00000(-3)

11 -4.50910(-3) -4.13448(-3) -4.13293(-3) -4.13248(-3) -4.13223(-3)

a
aSee the footnotes in Table II.

b 2
Energy levels of H atom ( -1/2k

a..- . - a-*................... .. . -.*.

a -. p . - - -. - *. -. "
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1,111P V. / * .6~-uiv.;1IrI ~ II (I IIII ype -1, I i ll luI1ig 1
U .- %

k t 1-3 1-5 1 ,7 1-9

2 -6.63839(-1)

3 -8.58743(-2)

4 -4.22486(-2) -3.13557(-2)

5 -2.52510(-2) -2.00572(-2)

6 -1.68054(-2) -1.39231(-2) -1.38971(-2)

7 -1.19918(-2) -1.02260(-2) -1.02092(-2)

8 -8.98732(-3) -7.82732(-3) -7.81590(-3) -7.81383(-3)

9 -6.98617(-3) -6.18330(-3) -6.17518(-3) -6.17372(-3)

10 -5.58631(-3) -5.00766(-3) -5.00166(-3) -5.00059(-3) -5.00024(-3)

11 -4.56879(-3) -4.13796(-3) -4.13346(-3) -4.13265(-3) -4.13237(-3)

a See the footnotes in Table II.

.% 'j
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1+ a.Table V1. Energy levels of E type Rydberg states

n k 0 2 46 i8

-4 -4.64080(-2) -5.72547(-2)

5 -2.64274(-2) -3.19593(-2) -2.00298(-2)

6 -1.71486(-2) -2.03465(-2) -1.39062(-2)

*7 -1.20559(-2) -1.40793(-2) -1.02150(-2) -1.02078(-2)

8 -8.94882(-3) -1.03180(-2) -.7.81987(-3) -7.81498(-3)

9 -6.90857(-3) -7.88498(-3) -6.17811(-3) -6.17465(-3) -6.17376(-3)

10 -5.49274(-3) -6.22097(-3) -.5.00386(-3) -5.00134(-3) -5.00067(-3)

11 -4.46081(-3) -5.03262(-3) -4.13517(-3) -4.13328(-3) -4.13278(-3) I

a + 2 +

aIn atomic units (1 a.u. 27.21 eV) below N~ (X E)

bNumbers inside parentheses indicate the power of 10.
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1+ a
Table VII. Energy levels of Etype Rydberg states

U

n 13 L 5 L7 1

* 4 -1.02772(-l) -8.54582(-2)

5 -4.18326(-2) -3.13956(-2)

6 -2.48972(-2) -2.00775(-2) -1.38983(-2)

7 -1.64735(-2) -1.39314(-2) -1.02101(-2)

8 -1.16248(-2) -1.02309(-2) -7.81653(-3) -7.81419(-3)

9 -8.53928(-3) -7.83020(-3) -6.17575(-3) -6.17407(-3)

10 -6..65276(-3) -6.18573(-3) -5.00213(-3) -5.00092(-3) -5.00056(-3)

* 11 -5.32418(-3) -5.00917(-3) -4.13387(-3) -4.13296(-3) -4.13267(-3)

aL
Sethe footnotes in Table VI.

bThe n values are consistent with Mulliken's assignment (Ref. 6), but differ by

one unit from Dressler's assignment (Ref. 7).

6'a

AN
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Table VIII. Energy levels of II type Rydberg states ,

n - 2 L- 4 -6 t- 8

4 -5. 10714(-2)

5 -2.85280(-2) -2.00253(-2) "1

6 -1.83158(-2) -1.39036(-2)

7 -1.27814(-2) -1.02134(-2) -1.02075(-2)

8 -9.43470(-3) -7.81880(-3) -7.81484(-3)

9 -7.25213(-3) -6.17733(-3) -6.17453(-3) -6.17373(-3)

10 -5.74681(-3) -5.00330(-3) -5.00126(-3) -5.00066(-3)

11 -4.65981(-3) -4.13475(-3) -4.13322(-3) -4.13277(-3)

See the footnotes in Table VI.

o° . V.
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1 a
Table IX. Energy levels of nfl type Rydberg states

n -1 t-3 1-5 -7 L-9

3 -9.13323(-2)

4 -4.40846(-2) .- 3.13501(-2)

5 -2.60713(-2) -2.00529(-2) I
6 -1.72373(-2) .-1.39201(-2) -1.38974(-2)

7 -1.22442(-2) -1.02240(-2) -1.02095(-2)

-. 8 -9.14621(-3) -7.82596(-3) -7.81615(-3) -7.81411(-3)

-. 9 -7.09158(-3) -6.18238(-3) -6.17547(.-3) -6.17401(-3)

*.. 10 -5.65876(-3) -5.00700(-3) -5.00193(-3) -5.00090(-3) .-5.00054(-3)

11 -4.61911(-3) -4.13754(-3) -4.13373(-3) -4.13293(-3) -4.13266(-3)

-. a See the footnotes in Table VI.

'Ua

'a7
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3 + a
Table X. Energy levels of E 9type Rydberg states

3 -1.13895(-1)

4 -4.86088(-2) -5.79860(-2)

*5 .-2.73442(-2) -3.23170(-2) -2.00298(-2)

*6 -1.75921(-2) -2.05351(-2) -1.39063(-2)

7 -1.22914(-2) -1.41883(-2) -1.02151(-2) -1.02078(-2)

8 -9.08172(-3) -1.03858(-2) -7.81988(-3) -7.81499(-3)

*9 -6.98621(-3) -7.92941(-3) -6.71812(-3) -6.17465(-3) -6. 17376(-3) -

10 -5.53839(-3) -6.25120(-3) -5.00386(-3) -5.00134(-3) -5.00067(-3)

* 11 -4.48675(-3) -5.05343(-3) -4.13518(-3) -4.13328(-3) -4.13278(-3)

a-S

aSee the footnotes in Table VI.
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Table XI. Energy levels of 3E+ type Rydberg statesa.
u

"n I=3 1-5 =7 t9

4 -1.03570(-1) -8.72696(-2)

5 -4.25219(-2) -3.14252(-2)

6 -2.52225(-2) -2.00996(-2) -1.38983(-2)

7 -1.66328(-2) -1.39399(-2) -1.02101(-2)

8 -1.17026(-2) -1.02361(-2) -7.81654(-3) -7.81420(-3)

9 -8.87308(-3) -7.83264(-3) -6.17575(-3) -6.17407(-3)

10 -6.66733(-3) -6.18715(-3) -5.00214(-3) -5.00093(-3) -5.00056(-3)

11 -5.33223(-3) -5.01050(-3) -4.13388(-3) -4.13297(-3) -4.13267(-3)

aa

See the footnotes in Table VI.

.I.
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3 a,

Table XII. Energy levels of H type Rydberg statesa.

g

n L=2 1=4 t-6 1=8

4 -5.16214(-2) =

5 -2.87212(-2) -2.00254(-2)

6 -1.84182(-2) -1.39037(-2)

7 -1.28411(-2) -1.02135(-2) -1.02075(-2)

8 -9.46553(-3) -7.81880(-3) -7.81484(-3)

9 -7.27266(-3) -6.17733(-3) -6.17453(-3) -6.17371(-3)

1 10 -5.76093(-3) -5.00331(-3) -5.00126(-3) -5.00066(-3) L
- 11 -4.66932(-3) -4.13475(-3) -4.13322(-3) -4.13277(-3)

See the footnotes in Table VI.
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Table xiii. Energy levels of R type Rydberg states

u

n 1e L -3 1i. 7e L9

0

3 -9.19470(-2)

I 4 -4.42717 (-2) -3.13516(-2)

5 -2.61497(-2) -2.00579(-2)

6 -1.72766(-2) -1.39237(-2) -1.38974(-2)

I 7 -1.22662(-2) -1.02265(-2) -1.02095(-2)

8 -9.15955(-3) -7.82781(-3) -7.81615(-3) -7.81411(-3)

9 -7.10009(-3) -6.18374(-3) -6.17548(-3) -6.17401(-3)

! 10 -5.66435(-3) -5.00803(-3) -5.00193(-3) -5.00090(-3) -5.00054(-3)

* a
See the footnotes in Table VI.
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Table XIV. Mixing coefficients in Eq. (16) for (ns) r8 states.

(ki) n- 3 n 4 n 5 n =6 n 7 n 8 n 9 n 10 n 11

ls -0.239 0.130 0.084 -0.058 0.042 0.031 0.023 0.017 -0.011

2s 0.873 -0.239 -0.133 0.087 -0.061 -0.045 -0.034 -0.025 0.018 .

3s -0.479 -0.611 -0.196 0.110 -0.073 -0.051 -0.038 -0.028 0.019

4s -0.162 0.618 -0.506 0.173 -0.098 -0.065 -0.046 -0.033 0.023

5s -0.093 0.191 0.704 0.437 -0.156 -0.089 -0.059 -0.041 0.027 ,-

6s -0.063 0.110 0.200 -0.763 -0.383 -0.141 -0.081 -0.052 0.034

7s -0.047 0.075 0.114 -0.199 0.808 -0.338 -0.127 -0.071 0.043

8s -0.037 0.057 0.079 -0.113 0.194 0.845 -0.297 -0.112 0.058

9s -0.030 0.045 0.056 -0.078 0.109 0.186 0.877 -0.255 0.091

los -0.025 0.037 0.047 -0.059 0.075 0.104 0.176 0.910 0.200

Us -0.022 0.031 0.039 -0.047 0.057 0.071 0.097 0.162 -0.963

3d -0.269 -0.019 0.013 0.009 0.007 0.005 0.004 0.003 -0.003

4d -0.096 -0.337 -0.073 0.039 -0.025 -0.018 -0.013 -0.009 0.006

5d -0.047 0.146 -0.300 0.074 -0.040 -0.026 -0.018 -0.013 0.009

6d -0.031 0.061 0.169 0.262 -0.070 -0.038 -0.024 -0.017 0.011

7d -0.022 0.038 0.066 -0.180 -0.229 -0.064 -0.035 -0.022 0.014 .,

8d -0.017 0.027 0.041 -0.067 0.185 -0.200 -0.058 -0.031 0.018

9d -0.014 0.021 0.029 -0.041 0.066 0.186 -0.173 -0.052 0.025

lOd -0.011 0.017 0.023 -0.029 0.040 0.063 0.183 -0.146 0.041

lid -0.010 0.014 0.018 -0.023 0.028 0.038 0.060 0.177 0.111

l0 0.070 -0.039 -0.026 0.018 -0.013 -0.010 -0.007 -0.005 0.004
g

2a 0.256 -0.138 -0.089 0.061 0.044 -0.033 -0.024 -0.018 0.011
g

3a 0.194 -0.110 0.072 0.050 -0.036 -0.027 -0.021 -0.016 0.011
g

3 . . . . . . . . .,.
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() n =4 n 5 n 6 n 7 n 8 n =9 n 10 n i

ls 0.084 0.058 0.042 0.032 -0.025 0.020 -0.016 0.013

2s -0.086 -0.045 -0.028 0.020 -0.014 -0.011 0.009 -0.007

3s -0.369 -0.066 -0.035 -0.022 0.016 -0.012 0.009 -0.007

4s 0.083 -0.356 -0.058 -0.030 0.019 -0.014 0.010 -0.008

5s 0.035 0.084 -0.333 -0.053 0.027 -0.018 0.012 -0.009

6s 0.022 0.036 0.081 -0.310 0.049 -0.025 0.016 -0.011

7s 0.015 0.023 0.035 0.077 0.289 -0.046 0.023 -0.014

8s 0.012 0.016 0.022 0.034 -0.073 -0.269 0.042 -0.021

9s 0.009 0.013 0.016 0.021 -0.032 0.069 0.247 -0.038

lOs 0.008 0.010 0.013 0.016 -0.020 0.030 -0.064 -0.221

11S 0.007 0.008 0.010 0.012 -0.015 0.019 -0.028 0.058

3d -0.009 -0.007 -0.005 -0.004 0.004 -0.003 0.003 -0.002

4d 0.921 -0.030 -0.014 -0.009 0.006 -0.005 0.003 -0.003

5d 0.027 0.925 -0.032 -0.015 0.009 -0.006 0.005 -0.004

6d 0.014 0.030 0.934 -0.031 0.015 -0.009 0.006 -0.005

7d 0.009 0.015 0.030 0.943 0.030 -0.014 0.009 -0.006

8d 0.006 0.010 0.015 0.029 -0.950 -0.029 0.013 -0.008

9d 0.005 0.007 0.010 0.015 -0.028 0.9,57 0.027 -0.012

10d 0.004 0.006 0.007 0.010 -0.014 0.027 -0.964 -0.025

11d 0.003 0.005 0.006 0.007 -0.010 0.014 -0.026 0.972

10 -0.019 -0.013 0.009 -0.007 0.005 -0.004 0.003 -0.003
g

2a -0.088 -0.061 -0.044 -0.033 0.026 -0.020 0.017 -0.014g
3a -0.022 -0.013 -0.009 -0.006 0.004 -0.003 0.002 -0.002

g

•. ............... . . . * . . . .
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'(n)1 + 1 .

Table XVI. Mixing Coefficients in Eq. (16) for unp) E + states.

k =n-2 k =n-l k =n k =n+l [.

n = 4_a -0.071 0.491-0870.6

:. n- = -0.206 -0.315 0.905 -0.170 .

,

n = 6 -0.125 -0.269 0.927 0.163 ..;

n = 7 0.109 0.240 -0.940 -0.155

n = 8 -0.098 -0.217 0.951 0.147 .

n 9 -0.090 -0.197 0.960 -0.138 "'

n = 10 0.081 0.177 -0.969 -0.128 |

n = 11 -0.070 -0.152 0.983 -

1 --1 in all basis functions (k,I).-""

V..

54<

• °"..

k~n-2 kn-1•k.nk:n-I-
o- .-

a.--,

n = -0.71 .491-0.57 -. 16

n = -0.06 0.31 0.05 -. 17

n = 6 -0.15 -0269°.9270.16

n = 7 0.10 0.20 -0940-0.15

n =8 -. 09 -02170.91 ...7 -- .............

.. n" -. 90 .170.6 -. 3
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Table XVII. Mixing coefficients in Eq. (16) for (nd) fl states. ~-
9

k n-2 k n-l k n k n+I

a -0.749 0.624 0.189

., n = 5 -0.216 -0.545 0.770 0.203

n = 6 -0.188 -0.435 0.837 0.200

n = 7 0.159 0.368 -0.875 -0.192 ;b.

* n = 8 -0.140 -0.321 0.902 0.182

n = 9 -0.124 -0.281 0.924 0.171

S n =10 -0.109 -0.245 0.944 0.159

n =11 0.092 0.202 -0.970

a 2 in all bssfunctions (k,t) 
.

-77
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Table XVIII. Mixing coefficients in Eq. (16) for (np)'H U states. E

k n-2 k n-1 k n k n+lau

n 3a -0.177 0.988 0.063

n 4 -0.097 -0.076 0.991 0.065

n = 5 0.035 0.075 -0.992 -0.062

n = 6 -0.035 -0.073 0.993 0.063

n =7 -0.034 -0.071 0.993 0.062

n = 8 0.033 0.069 -0.994 -0.060

n = 9 0.032 0.067 -0.994 -0.059

n = 10 -0.031 -0.064 0.995 0.057

n = 11 -0.029 -0.060 0.997

a t 1 irn all basis functions (k,k).

..rg

r-6-
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Table XIX. Comparison of energy levels with other works. 39

b
Present Ref. 4 Ref. 3b Experiment

(np)1e n-4 12.785 13.1 12.98 12.935c
U 5 14.443 14.4 14.35 14.364

6 14.904 14.9 14.86 14.871
7 15.133 15.13 15.110

8 15.265 15.245
9 15.349 15.332

10 15.400 15.386
11 15.436 15.426

1C
(np) I1 n=3 13.096 13.1 12.95 12.982

u 4 14.381 14.5 14.32 14.329

5 14.872 15.0 14.81 14.846
6 15.112 15.11 15.098
7 15.248 15.238
8 15.332 15.327
9 15.388 15.385

10 15.427 15.425
11 15.455 15.454

(ns) E n+ n 3 d 12.689 12.5 12.25
g 4 14.318 14.0

(nd) Ig n=4 14.191 13.06 14.100

3 +f
(np) 32+ n=4 g  12.763 13.0 12.84

u 5 14.424 14.4
6 14.895 14.9

* (np) 11 n=3 13.079 13.0 1.
u 4 14.376 14.4

5 14.869 14.9

(ns)3 n=3 12.482 11.9 11.87

g 4 14.258 13.9

a,, ( 1 +~ "
easured in eV above N ; See text.

b
Singlet-triplet distinction cannot be made; see text.

Ref. 17.

da, 1+

e g
eRef 1.

fRef.18.

g D3 E~u .. ,

hpE3+"

g-~ .--..

...... 'o•%% ° .*• . -... ....... ....... .. ..-.- . .2.
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0.7 0.8 0.9r (a.u.) . 12
07 08 09 1.0 11 .2 1.3

-0

-20

Figure 1. Plots of AV in Eq. (16) versus r for the Z symmetry.
d*. g
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r (a.u.)
0.7 0.8 0.9 1.0 1.1 1.2 13__ ! I . I 1 I I I I,,.. 1

-0

L

1 1+3OL-

Figure 2. Plots of AV in Eq. (16) versus r f or the 1 symmetry.WT
U
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r( a. u.)
0.7 0.8 0.9 1.0 1.1 1.2 1.3

0

L 3

fflu

Figure 3. Plots of AV in Eq. (16) versus r for the IT symmetry.
U
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Long-wave infrared emission of atmospheric atoms, especially oxygen, is of

great interest. One important mechanism for producing the "oxygen long-wave

infrared emitters", i.e., highly excited oxygen atoms, is dissociation of 02 by

electron impact,

02 --t 0 + 0*.

The ground state oxygen atom has an electron configuration Is22s2 2p4. The

excited states which lie below the first ionization limit are well described by

the Russell-Saunders coupling. A configuration 2p3nt comprises a number of LI
levels characterized by L, S, and J. In this work we are not concerned with the

fine structure, thus we designate an excited level by n, E, L, S.

An oxygen atom in a highly excited level, say n=7, may emit long-wave

infrared radiation upon decaying to a level of slightly lower energy, say n=6.

For example the 7f 3F 6d 3D transition gives emission at 120,577 A. However,

measurement of the intensity of this emission is very difficult because the

infrared detectors available for 120,000 A wavelength have very low sensitivity

compared to photomultipliers which operate in the wavelength range of about

2,000 - 12,000 A.

Recently Schulman et al.- have performed experiments on production of

excited oxygen atoms by electron impact on oxygen molecules with incident

electron energy from threshold to 500 eV. They measured the intensity of

radiation from the excited oxygen atoms In the wavelength range 3,690 - 11,300 A

corresponding to transitions from the highly excited states to the low excited

states (3s and 3P). Absolute optical emission cross sections have been reported

for transitions in the wavelength range 3,690 - 11,300 A originating from some

thirty spectroscopic terms. In this work we show that by combining the data of

Schulman et al. with theoretical transition probabilities, it is possible to

obtain optical cross sections for e mission of atomic-oxygen lines in the

long-wave infrared region (produced by electron impact on oxygen moleculi-s) which

are othe+rwise very difficult to r,(a ;ure directly.
Ir9.,
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j The ratio of the optical emission cross sections for two transitions vhi h i

originate from the same upper level is equal to the ratio of the corresponding

transition probabilities A. i.e.,

U-)Q(i-k)
Q( i.4j) =A(i-k) i . I

Thus optical cross sections for the emission lines that share a common upper

level with a transition reported in Ref.l can be determined by using the

appropriate transition probabilities. Since direct measurement of emission

intensity in the infrared, especially long-wave infrared, region is more

difficult than in the visible and near ultraviolet region, Eq. (1) allows us

to obtain optical cross sections for infrared lines from the theoretical

transition probabilities.

In this section we consider only transitions between levels with the

p3(4S) 42p ( S)nI, configuration. Since the 0 core is in a S state, the total orbital

angular momentum L of the oxygen atom is equal to . An excited level is

then designated by nLSJ. The transition probability between two levels

may be written as
2

A(n'LSJ' - nLSJ) -A (M)*(L)a(n'L'S -P nLS)/(2J'+l), (2)

a(n'L'S -o- nLS) - 64wr4 a o/3hc3  (3)

2 2 212 2_1~~JJ (-trr ., ,'(r)r rdr 2/(4tL> - )  (4) --

wherej(lO is the multiplet strength,k (L) the line strength, Rn the radial

wave function, and t > is the greater of . and V.. Formulas for4() and ,

(L) are given in Ref. 3. For transitions between states of the type

3 4 5 5 5 5 5 52p ( S)nt, the values of-X(l) are 15 for 5S- P, 150 for P- D, 525 for D- F,

9 for 3S- 3P, 90 for 3P- 3D, and 315 for 3D- 3F. The line strengths are shown

in Table 1.

IN .... -
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The radial wave functions R (r) in Eq. (4) are calculated by the N

Hartree-Fock self-consistent-field (SCF) procedure. To simplify the Ii
calculation, the Is and 2s orbitals of the excited oxygen atom are taken I -

+ 3 4
from the SCF solution of the 0 [2p ( S)) ion, and are not varied in the V

iteration cycles. In Table II we list the values of a(n'L'S - nLS) calculated

from these Hartree-Fock wave functions for the transitions which are used

to obtain the long-wave infrared emission cross sections according to Eq.(1).

3(4
For a given configuration 2p ( S)n1, the radial wave functions for the triplet

states are different from those for the quintet states because of the different

exchange terms in the Fock equations. This is particularly true for the np

series on account of the strong exchange interaction between the 2p and np.

orbitals. We see in Table 11 that this difference in radial functions between

the triplet and quintet series is reflected in the transition probabilities.

To get an indication of the accuracy of the Hartree-Fock calculation,

we have computed the transition probabilities using a different method, i.e.,

the self-interaction-corrected form of the local-spin-density (LSD) approximation.

This method has been discussed extensively in the literature, -7  thus

only a brief description is presented here. In the conventional LSD or the

Hartree-Fock-Slater method, the exchange potential in the Fock equations for

the one-electron orbitals is approximated by a local potential proportional

to the cubic root of the electron density (or spin density for spin-polarized

cases), P1 3  This local exchange approximation greatly simplifies the

computational work, but has a serious drawback related to the self-interaction

in the following way. The effective potential of an electron in the

Hartree-Fock theory consists of the electron-nucleus attraction, electron-

electron Coulomb repulsion, and the exchange potential. The electron-

• .. ............. . ::IV ,.
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electron Coulomb repulsion includes a term corresponding to the interaction

of the electron with itself. This unphysical self-interaction is cancelled

by an identical term in the exchange potential so that its presence has no

effect. However, when the exchange potential is approximated by the local

V 1/3p form, the cancellation of the self-interaction energy is not complete.

One troublesome consequence of this incomplete cancellation is that for a

neutral atom the electron potential at a large distance r from the nucleus
approaches zero much faster than the correct -hr dependence, resulting in

an underestimation of the net attraction, hence the ionization energy.

This difficulty is partly resolved by a cutoff procedure, adopted in the

Herman-Skillman formulation8  of the Hartree-Fock-Slater method, in which the ,...

local exchange approximation is used only in the region of r between zero

and a cut-off value r, and for r>r the electron potential is simply set to
00 ~

-I/r. Nevertheless this cutoff procedure does not completely remove the

spurious self-interaction, although it gives the correct asyrptotic potential

energy.

A more fundamental way of addressing the problem of self-interaction is

to remove the self-interaction terms from the total energy in the outset.

This approach has recently met with great success in calculations of

4-6electronic structure of atoms, and is often referred to as the self-

interaction correction (SIC). Of special interest to us is the paper

7
of Harrison et al., which demonstrates the success of the SIC-LSD approximation

for calculating energies of excited states of atoms. The SIC-ISD approximation

retains the computational simplicity of the Hartree-Fock-Slater approach,

but provides a significant improvement over the conventional LSD approximation.

We have applied the SIC-LSD method (spin-polarized) to calculate

a(n'L'S nLS) for the quintet states, and the results agree well (1,10%)

Pi
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with the values obtained by the Hartree-Fock wave functions (Table II).

The agreement between the two sets of results supports the accuracy of our

calculation within the Hartree-Fock framework.

Earlier works on the transition probabilities of the oxygen atom

include the calculation using wave functions determined by the Hartree-Fock-

Slater method (without the SIC).10  The formulation of the Hartree-Fock-Slater

method as given in Ref. 8 uses the total electron density (rather than the

1/3_spin density) in the Pl-exchange term; therefore it gives the same

R (r) for the quintet and triplet states of the 2p 3( 4S)n1 configurations.

Nevertheless, compared with our values of a [Eq. (4) ] of the quintet series,

those of Ref.l0 are generally within a 25% range when a is greater than 1.0.

For smaller values of a the discrepancy is much larger. As pointed out in

Ref. 10, the integral of Eq. (4) is very sensitive to the wave functions,

particularly when severe cancellation occurs between the positive and

negative contributions. Thus it is not surprising to find a much larger

discrepancy between the Hartree-Fock and Hartree-Fock-Slater results for the

cases where q is small.

Biemont and Grevesse calculated oscillator strengths for a large

number of infrared lines of atomic oxygen using the Coulomb approximation. 1 2 11

The Coulomb approximation takes advantage of the fact that, in the usual

length formula, nearly all the contribution to the dipole matrix element comes

from the outer lobes of the two wave functions involved. This asymptotic

part of the wave function may be computed simply with the knowledge of the

Coulombic potential and the ionization energy, since the short-range

potentials such as electron-exchange potential become negligible for large

r. Therefore, this method is suitable for computing the dipole matrix

rn-
elements between a pair of highly excited states. It follows, on the other

hand, that the validity of this method may be questioned for low-lying

SF7
N'o

-. - . . . . .. ..... . "* 5 .% %. .



51 1states, and this point is discussed in Ref. 12. 51

The majority of the infrared lines of Ref.11 involve highly excited

2
states. Comparison is made of a in Eq.(4) between the present work and

Ref.ll for some 140 transitions (ns, np, nd, and nf, with n up to 10).

In most cases the agreement is within 25%. About ten cases, in which , -

discrepancy is greater than 25%, occur mostly in 3S - 3P and 3p 3 D series.

In computing dipole matrix elements, the relative "phase" of the pair V

of wave functions is an important factor. The position of the outer peak

of a wave function is dictated by the details of the potential in the

* interior region. In our Hartree-Fock calculation the triplet and quintet func-

tions of the same nt are shifted relative to each other because of the

difference in exchange-coupling coefficients. When the Coulomb approximation

is used, such effect is taken into consideration to some extent through the

effective quantum number n*, but falls short of the rigorous treatment with

the re.'ult that the wave function may be shifted by an improner amount from

Sthe hydrogenic counterpart. Although the inaccuracy in the phase shift may

be small in each of the wave functions, it could lead to much greater error

in the dipole matrix elements where the relative phase shift of the two

3 3 3 3" functions is an important factor. The discrepancy in the S - P and P - D

series referred to in the preceding paragraph may be attributed to the

inaccuracy in the phase shift in the Coulomb-approximation wave functions.

The values of a(n'L'S - nLS) in Table II are combined with the measured

optical emission cross sections of Ref.l in accordance with Eq. (1) to

yield optical cross sections for a number of infrared lines. Since the
7 7V

individual J' - J components of an n'L'S - nLS transition are not resolved

in the measured emission, we assume that the population of the J-levels (due

to electron impact) within an (nLS) term is proportional to the statistical

lid

* .~-- :: ~ -:........
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weight, 2J+1. The optical cross sections for fifteen n'L'S +nLS transitions in

the 40,000-140,000 range obtained in this way are sumarized in Table III.

P -z-

-7 :V
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fablC ~ Line SLrength J(L) 5

Quintets (S-2) Triplets (S=l)

*S-P 2 3 7/15 1 2 5/9

A2 2 1/3 1 1 1/3

2 1 1/5 1 0 1/9

*P-D 3 4 9/25 2 3 7/15

3 3 7/75 2 2 1/12

3 2 1/75 2 1 1/180

*2 3 14/75 1 2 1/4

2 2 7/60 1 1 1/12

2 1 3/100 0 1 1/9

1 2 71100 4

1 1 9/100

211 0 1/25

D-F 4 5 11/35 3 4 3/7

4 4 3/70 3 3 1/27

4 3 1/350 3 2 1/945

3 4 3/14 2 3 8/27

3 3 3/50 2 2 1/27

*3 2 1/175 1 2 1/5

2 3 24/175

2 2 2/35

2 1 1/175

1 2 2/25

1 1 1/25

0 1 1/25



Table 11. a(n'L'S nLS) as defined in Eq. (3).

0 Multiplet x(R) a (sec.

6s 5 4 3p 5P 5437.45 1.28824 (6) a3 3.
6s S - 3p P 6048.06 1.05174 (6)

6s 5S + 5p 5 71779.87 5.44747 (5)
• 3s  3r

6 s S 5p P 77211.17 4.49093 (5)
t 5s 5 ."

7s S - 3p P 5020.83 7.12077 (5)
5s  5p":

7s 5S 6p 5 132148.12 2.09108 (5)

5 54p P - 3s S 3948.57 3.50477 (5)

5 54p P - 3d D 59773.34 4.93382 (4)

5d 5D - 3p 5p 5331.32 4.54278 (5)

5d 5D -4f 5F 41371.10 2.85093 (3)

- 5d 5D - 5p P 56842.49 2.76437 (5)

7d 5D - 3p 5P 4774.37 1.17938 (5)

S7d 5D - 5f 5F 46907.72 1.09355 (3)

5 5
7d D - 6p 5 56026.60 4.03733 (4)

- 7d 5D 6f 5F 126850.42 1.39241 (3)

5 5
6f F 3d D 10678.77 1.57035 (5)

3 3
6f F - 3d D 10756.48. 1.50984 (5)

6f 5  F 5d 5D 71440.57 5.01200 (4)

3 3
6f F - 5d D 72664.23 5.12763 (4)

7f 5F 3d D 9828.63 8.86534 (4)

7f 7 P - 3d 9894.46 8.47534 (4)
5 5

7f F - 5d D 45254.09 3.01991 (4)

3 3
7f F 5d D 45742.75 3.01714 (4)

5 5
7f F 6d D 118529.35 1.76778 (4)

3 3

7f 3 6d 3 120577.23 1.83095 (4)

a Numbers in the parentheses denote the power of 10.
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Table III. Excitation cross sections for long-wave infrared emission

of 0 produced by dissociative electron-impact excitation of 02 at 100 eV.

0 )ultiplet )() EJIJQopt(J ' .J)

(10_20 cm 2)

5d 5D 0 4f 5F 41371 0.075

7f F 5d D 45254 0.82

7f 3F +5d 3D° 45743 0.53

7d 5D° - f 5 F 46908 0.019

7d 5o 6p P 56027 0.20

SDo ."So5d D +Sp P 56842 2.1

4p 5P 3d D 59773 2.9

5 So 7140.6f F -5d D 71441 1.4

6s S° 5p p 71780 0.33

6f F -5d 3D° 72664 1.3

6s S +5p P 77211 0.13

7f 5F - 6d 5D 118529 0.48

7f 3F - 6d 3 D0 120577 0.32

7d D - 6f F 126850 0.024

So 6p p 132148 0.085

,
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